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Abstract

A finite element method (FEM) for liquid sloshing modal analysis is established. Surface tension and three kinds of

contact line boundary conditions, namely, free-end, pin-end and wetting boundary conditions, are taken into account.

Sloshing damping caused by energy dissipation at the wall, in the interior fluid and at the contact line is calculated.

Numerical results are compared with the analytical values and measurements. For the pin-end and free-end boundary

conditions the differences between numerical value and analytical value are small, and for the wetting boundary condition,

because approximation is used, the differences are more significant.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The phenomenon of liquid sloshing in a rigid container has been studied for many years [1,2]. It is especially
important for the stability of liquid-filled spacecrafts. In order to deal with the sloshing problem in low-gravity
environments, the capillary effect has to be taken into account. It is well known that the behavior of the
contact line plays an important role in determining the frequencies, damping rates, and waveforms of
capillary-gravity waves, so a suitable contact line boundary condition is very necessary. The first contact line
boundary condition adopted is free-end boundary condition. It assumes that the contact angle remains
unchanged and the contact line can freely slip during sloshing. But the prediction with this boundary condition
is not always consistent with the experiment results. In order to explain this discrepancy, Benjamin and Scott
[3] and Graham-Eagle [4] made the assumption that under certain circumstances the contact line can remain at
rest even in the presence of oscillation of the free surface. This boundary condition is known as the pinned-end
boundary condition. The experiment of Henderson and Miles [5] showed it is the appropriate boundary
condition for small amplitude liquid sloshing in a brimful container. When the container is not brimful and the
sloshing is in a low-amplitude regime, the validity of the boundary condition was also confirmed
experimentally by Cocciaro et al. [6]. But in cases when the container is not brimful and the sloshing is in
a high amplitude regime, a more complex boundary condition has to be introduced. Hocking [7] and Miles
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

A an nf� nf matrix
A0 reduced matrix of A
B an nf� nf matrix
B0 reduced matrix of B
Bi area element matrix in element i

Bjk
i element of matrix Bi

C an nf� nf matrix
C0 reduced matrix of C
D1 energy dissipation ratio in Stokes bound-

ary layer
D2 energy dissipation ratio in inner flow
Di line element matrix in element i

Djk
i element of matrix Di

E mean total energy
f a specified function on Sf.
F liquid dissipation function
g effective gravitational acceleration
G an nf� nf matrix
h amplitude of sloshing wave height
hij value at node j in line element i

ho a nf� 1 array
i an integral number
j an integral number
k an integral number
K an ng� ng matrix
K1 an nf� nf matrix
K01 an (nf�1)� (nf�1) matrix
K2 an nf� (ng�nf) matrix
K02 an (nf�1)� (ng�nf) matrix
K3 an (ng�nf)� nf matrix
K03 an (ng�nf)� (nf�1) matrix
K4 (ng�nf)� (ng�nf) matrix
K5 nf� nf matrix
K5
0 an nf� (nf�1) matrix

K5
00 an nf� 1 matrix

K6 an (ng�nf)� (nf�1) matrix
Ki volume element matrix in element i

Kjk
i element of matrix Ki

l number of nodes in area element
L contact line
m number of nodes in volume element
Mj basis function of node j in area element
n interior normal unit vector at boundary
ng total number of all nodes
nf number of nodes at free surface
Nj basis function of node j in volume

element
p number of nodes in line element
Pj basis function of node j in line element

< a function used in the expression of the
dissipation function

r number of nodal circles
s number of nodal diameters
Sf free surface
Sf

i region of area element i

Sw wetting boundary
t time
T surface tension
U amplitude of liquid velocity
V velocity vector of liquid
V̄ velocity of liquid in Stokes boundary

layer
Vx x component of V
Vy y component of V
Vz z component of V
V0 velocity obtained by irrotational flow

theory at wall
v kinematic viscosity
a a factor of the penalty function
g1 damping rate in Stokes boundary layer
g2 damping rate in inner flow
z sloshing wave height
y angle between n and z-axis
l capillary coefficient
m dynamic viscosity
P1 functional in the case of pin-end bound-

ary condition
P2 functional in Neumann problem
P3 functional in the case of free-end bound-

ary condition
P4 functional in the case of wetting bound-

ary condition
r the liquid density
F velocity potential
f amplitude of velocity potential
f1
00 the first element of u1

fi value of f in element i

fij value of f at node j in element i

u1 an nf� 1 array
u1
0 an (ng�nf�1)� 1 array

u2 an (ng�nf)� 1 array
ui an m� 1 array of element i

u1
i an l� 1 array of element i

u0 an ng� 1 array
u1
0 an nf� 1 array
@ a function used in the dissipation func-

tion
c phase difference between F and z
o a temporary variable
c1 phase difference between F and z
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O region of liquid
Oi region of volume element i

o sloshing frequency
o1 complex frequency
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[8,9] proposed a new and more general boundary condition where the contact angle is assumed to be a linear
function of the contact line velocity. It is known as the ‘wetting’ boundary condition and contains the free-end
and pinned-end boundary conditions as its limiting cases. In the experiment of Cocciaro et al. [6] a nonlinear
dependence of the eigenfrequency and damping rate upon the oscillation amplitude is found in high amplitude
regimes, and all the experimental results can be explained in terms of the wetting boundary condition, in which
an ‘effective’ capillary coefficient is introduced.

Analytical methods for sloshing modal analysis usually make the assumption that the free surface is flat and
the shape of the container holding the liquid is regular and simple, such as rectangular or cylindrical. But in a
low-gravity environment the free surface is usually not flat. And in practice the shape of the container
generally depends upon certain factors such as the design and environment, a wide variety of shapes, regular
and irregular, are in use. It is therefore desirable to develop a numerical method to analyze the sloshing
behavior of liquid in containers of a fairly general shape. General purpose computational fluid dynamics
(CFD) codes with a free surface capability can be used to analyze the small amplitude sloshing of liquid with
capillary effect directly. But CFD codes always call for relatively large computing resources and have difficulty
in calculating the damping rate. There are two difficulties. First, the numerical dissipation will influence the
damping rate computation and make the numerical results undependable. Second, the computing of
dissipation near the wall and the free surface required refined grids and causes the computational quantity to
increase dramatically. So modal analysis other than direct CFD simulation is a more effective way to obtain
the frequencies and damping rates of sloshing. To the best of our knowledge, the Ritz method is the only
numerical method that has been used for the modal analysis of the small amplitude sloshing of liquid with
capillary effect. However, it depends on the shape of the liquid field and is not convenient to use. In the present
paper, finite element method (FEM) is employed to deal with this problem, and recent advances in contact line
boundary condition and damping rate computation are taken into account.

2. Theory

In the case of liquid sloshing with small amplitude, viscosity only seriously influences the flow in a thin layer
near the rigid boundary, which is called the Stokes boundary layer. The flow outside this boundary layer can
be considered as an irrotational flow. So the theoretical model of liquid sloshing with small amplitude is
divided into two parts: the Stokes boundary layer at the rigid boundary and the irrotational flow outside the
boundary layer. The eigenfrequencies and modes of sloshing will be calculated by the irrotational flow theory,
and the damping will be calculated in both the irrotational flow and the Stokes boundary layer.

2.1. Irrotational flow theory

As shown in Fig. 1, O denotes the region of the liquid, Sw the wetting boundary, Sf the free surface, L the
contact line, n the interior normal unit vector at the boundary, z the sloshing wave height measured in the n

direction, T the surface tension, r the liquid density, and g the effective gravitational acceleration. A Cartesian
reference frame oxyz is defined with z measured in the direction opposite to gravitational acceleration.
Generally speaking, the thickness of the Stokes boundary layer is very small, so the rigid boundary of the
irrotational flow can be approximately replaced by the wetting boundary Sw. Designating the velocity of liquid
as V and the velocity potential as F; then

V ¼ rF. (1)

The irrotational flow problem is prescribed by

r2F ¼ 0 ðin OÞ, (2)
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Fig. 1. Sketch map of liquid sloshing problem in rigid container.
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qF
qn
¼ 0 ðon SwÞ, (3)

qF
qt
�

g

cos y
�

T

r
r2

� �
z ¼ 0 ðon Sf Þ, (4)

qF
qn
¼

qz
qt
ðon Sf Þ, (5)

where y is the angle between between n and the z-axis. In the present paper three kinds of contact line
boundary conditions will be considered: they are the free-end boundary condition

qz
qn
¼ 0 ðon LÞ (6)

the pin-end boundary condition

z ¼ 0 ðon LÞ (7)

and the wetting boundary condition

qz
qt
¼ l

qz
qn
ðon LÞ, (8)

where l is the phenomenological capillary coefficient, which was proposed by Hocking [7] and Miles [8,9]. An
important feature of the wetting boundary condition is that it includes, as special cases, both the free-end
(l ¼N) and the pinned-end (l ¼ 0) boundary conditions.

2.2. Damping calculation

The theoretical analysis of damping in liquid sloshing with small amplitude goes back to Stokes (1851). He
calculated the flow over an oscillating plane, and remarked that the corresponding flow over an oscillating
curved boundary may be calculated to a very close degree of approximation by regarding each element of the
boundary as an infinite plane oscillating with the same velocity. But there is large difference between the
predicted value using this method and the measured value. It is pointed out in Ref. [6] that the damping of
liquid sloshing is due to: (i) viscous dissipation at the rigid boundary of the container, (ii) viscous dissipation at
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the free surface, which may be covered by a viscoelastic film, (iii) viscous damping in the interior fluid, and (iv)
capillary hysteresis at the contact line. If the free surface is clean, (ii) does not exist and will not be considered
in the present paper. The Stokes boundary layer theory is used to calculate the dissipation at the rigid
boundary, so it will be introduced here. Usually the thickness of the Stokes boundary layer is very small, so the
wall can be treated as an infinite plane when studying the flow near the wall. As shown in Fig. 2, in the Stokes
boundary layer the velocity of liquid is approximately parallel to the wall, the flow is prescribed by

qV̄

qt
¼ v

q2V̄

qz2
, (9)

where V̄ is velocity of liquid in the Stokes boundary layer, z is the normal coordinate of the wall, and v is the
kinematic viscosity. The boundary condition at the wall is

V̄ ¼ 0 ðz ¼ 0Þ. (10)

At the outside boundary of the Stokes boundary layer, V̄ can be replaced by V0, which is the velocity
obtained by the irrotational flow theory:

V̄ ¼ V0 ðz!1Þ. (11)

In the case of free oscillation, V0 can be expressed as V0 ¼ U eiot, where o is the sloshing frequency, and U is
the amplitude. From the equation and boundary conditions above, we can obtain

V̄ ¼ U eiotf1� exp½�ðio=vÞ1=2z�g. (12)

The mean energy dissipation ratio in the Stokes boundary layer in a sloshing period is

D1 ¼
1

2
r

1

2
vo

� �1=2 ZZ
Sw

jU j2 dS. (13)

For free oscillation, F can be written as

F ¼ f sinot, (14)

where f is amplitude. Then the mean total energy is

E ¼
r
2

Z
O
jrfj2 dO. (15)

The damping rate at the rigid boundary is

g1 ¼
D1

2oE
. (16)

The damping rate in the inner fluid will be calculated next. The dissipation function for viscous dissipation
of liquid is

F ¼
m
2

Z
O
@ðVÞdO, (17)
Fig. 2. Sketch map of Stokes boundary layer.
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where

V ¼ ½Vx V y Vz�
T,

@ðVÞ ¼ 2
qV x

qx

� �2

þ 2
qV y

qy

� �2

þ 2
qV z

qz

� �2

þ
qV z

qy
�

qV y

qz

� �2

þ
qV x

qz
�

qV z

qx

� �2

þ
qV y

qx
�

qV x

qy

� �2

and m is the dynamic viscosity. The inner flow is simulated according to the irrotational flow theory. Strictly
speaking, there is no dissipation for an irrotational flow, but the dissipation function of an irrotational flow
could be written as an approximation. Using V ¼ rF, Eq. (17) can be expressed as

F ¼
m
2

Z
O
<ðFÞdO, (18)

where

<ðFÞ ¼ 2
q2F
qx2

� �2

þ 2
q2F
qy2

� �2

þ 2
q2F
qz2

� �2

þ 4
q2F
qx qy

� �2

þ 4
q2F
qy qz

� �2

þ 4
q2F
qz qx

� �2

.

Then in the case of free oscillation the mean energy dissipation ratio for the inner flow in a sloshing period is
obtained approximately as

D2 ¼
o
2p

Z 2p=o

0

2F dt ¼
o
2p

Z 2p=o

0

m
Z
O
<ðfÞdO cos2 otdt ¼

1

2
m
Z
O
<ðfÞdO (19)

and the damping rate in the inner flow is

g2 ¼
D2

2oE
(20)

In the case of free-end and pin-end boundary conditions, there is no dissipation at the contact line, and in
the case of the wetting boundary condition, if l 6¼0, the movement of contact line will cause dissipation. When
the irrotational flow theory and wetting boundary condition are used in the modal analysis of liquid sloshing,
the results of frequencies will be complex numbers whose real parts are minus and denote damping rates
caused by the dissipation at the contact line. The details of this will be described later.

3. Modal analysis in FEM

For different contact line boundary conditions, the FEMs used for the modal analysis of liquid sloshing are
somewhat different. So the three kinds of contact line boundary conditions will be dealt with separately.

3.1. Pin-end boundary condition

In the case of an irrotational flow and pin-end boundary condition there is no dissipation during sloshing,
so F and z in free oscillation can be expressed as

F ¼ f sinot, (21a)

z ¼ h sinðotþ cÞ, (21b)

where f and h denote amplitude and c denotes the phase difference between F and z. Substituting Eq. (21a, b)
into Eq. (5), we can obtain

qf
qn

sinot ¼ oh cosðotþ cÞ. (22)

In order to make the equation above valid, c must have the form of

c ¼ ðk þ 1=2Þp. (23)
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Let c ¼ p/2, Eq. (21) can be rewritten as

F ¼ f sinot, (24a)

z ¼ h cosot. (24b)

Substituting Eq. (24) into Eqs. (2), (3), (4), (5), (7), we can obtain the equation and boundary conditions
that only contain the space variables

r2f ¼ 0 in O (25)

qf
qn
¼ 0 on Sw (26)

ho ¼
qf
qn

on Sf (27)

of�
a

cos y
�

T

r
r2

� �
h ¼ 0 on Sf (28)

h ¼ 0 on L: (29)
3.1.1. FEM dispersion

In order to use FEM, variational formulation of liquid sloshing has to be established first. The Galerkin
statement of equivalent weak formulation of the Eq. (25) and boundary conditions (26) and (28) isZ

O
r2fdfdO�

Z
Sw

qf
qn

dfdS �

Z
Sf

a

cos y
�

T

r
r2

� �
h� of

� �
dhdS ¼ 0. (30)

Using integration by parts we can get the equationsZ
O
r2fdfdO ¼

1

2
d �

Z
O
rfrfdO

� �
þ

Z
SwþSf

df
qf
qn

dS (31)

and Z
Sf

r2hdh dS ¼

I
L

qh

qn
dh dL�

Z
Sf

rðhÞrdhdS ¼ �

Z
Sf

rhdrhdS (32)

Eq. (29) is used to make the second equation of Eq. (32) valid. Substituting Eqs. (31) and (32) into Eq. (30)
and using Eq. (27), we can obtain the variational formulation

dP1 ¼ 0, (33)

where

P1 ¼

Z
O
rfrfdO�

Z
Sf

a

cos y
h2 dS �

Z
Sf

T

r
rhrh dS. (34)

The pin-end boundary condition (29) is a coercive boundary condition, so it has to be applied in the
variational formulation above. There are two ways for it to be applied. One is to let the wave height at the
contact line be zero directly; the other is the penalty function method, namely

P1 ¼

Z
O
rfrfdO�

Z
Sf

a

cos y
h2 dS �

Z
Sf

T

r
rhrhdS � a

Z
L

h2 dL, (35)

where a is a constant whose value should be selected properly. When a is too small, the penalty function will
lose its effect, and when a is too large, the matrix in the FEM will be ill-conditioned.
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In variational formulation (34) there are two kinds of variables, the velocity potential f and the wave
height. Eq. (27) means that h can be expressed in terms of qf/qn at the free surface. On the other hand,
according to the Neumann problem of the Laplace equation, f in O can be determined by qf/qn at Sf and Sw.
At Sw qf/qn ¼ 0, then f in O can be determined by qf/qn at Sf. So qf/qn at Sf will be selected as the variable
of FEM modal analysis. In order to establish the relationship between f in O and qf/qn at Sf, the variational
formulation of the Neumann problem needs to be used. The Neumann problem can be expressed as

r2f ¼ 0, (36)

qf
qn
¼ 0 ðon SwÞ, (37)

qf
qn
¼ f ðon Sf Þ, (38)

where f is a specified function on Sf. The Galerkin statement of equivalent weak formulation of the equation
and boundary conditions above isZ

O
r2fdfdO�

Z
Sw

qf
qn

dfdS �

Z
Sf

qf
qn
� f

� �
dfdS ¼ 0. (39)

Using Eq. (31), we can obtain the variational formulation

dP2 ¼ 0, (40)

where

P2 ¼

Z
O
rfrfdO�

Z
Sf

f
qf
qn

dS. (41)

The finite element dispersion is carried out on the basis of the variational formulations (33) and (40). The
relationship of f in O and qf/qn at Sf is established in discrete form first. Let every volume element have m

nodes. In volume element i, f is expressed as

fi ¼
Xm

j¼1

fijNj, (42)

where fij is the value at node j in volume element i, and Nj is the basis function of node j. Let every area
element have l nodes. In area element i, f and qf/qn are expressed as

fi ¼
Xl

j¼1

fijMj , (43)

qf
qn

� �
i

¼
Xl

j¼1

qf
qn

� �
ij

Mj, (44)

where fij and (qf/qn)ij are the values at node j in area element i, and Mj is the basis function of node j.
Substituting Eqs. (42), (43), and (44) into Eq. (41), we can obtain the discrete representation of Eq. (41):

P2 ¼
X

i

Xm

j¼1

Xm

k¼1

fij

Z
Oi

rNjrNk dOi

� �
fik �

X
i

Xl

j¼1

Xl

k¼1

fij

Z
si

f

MjMk dSi

 !
qf
qn

� �
ik

, (45)

where Oi is the region of volume element i, and Sf
i is the region of area element i. P2 can be further expressed

as

P2 ¼
X

i

uiTKiui �
X

i

uiT
1 Bi qf

qn

� �i

, (46)
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where

ui ¼ ½fi1;fi2 . . .fim�
T

ui
1 ¼ ½fi1;fi2 . . .fil �

T

qf
qn

� �i

¼
qf
qn

� �
i1

;
qf
qn

� �
i2

. . .
qfil

qn

� �
i2

� �T

Ki ¼ fKi
jkg; Ki

jk ¼

Z
Oi

rNjrNk dOi; j; k ¼ 1; 2; . . . ;m,

Bi ¼ fBi
jkg; Bi

jk ¼

Z
si

f

MjMk dSi; j; k ¼ 1; 2; . . . ; l.

The values of f at all nodes are arranged as a column matrix uo of order ng where ng is the number of all
nodes. Let the nodes at the free surface be arranged into the first nf positions of uo where nf is the number of
nodes at the free surface. u1

o is a column matrix of order nf corresponding to the first nf elements of uo. The
values of qf/qn at all free surface nodes are arranged as a column matrix (qf/qn)o, and then

P2 ¼ uoTKuo � uoT
1 B

qf
qn

� �o

, (47)

where K and B are assembled from Ki and Bi. K is a matrix of size ng� ng, and B is a matrix of size nf� nf.
The matrixes K and uo are divided as follows:

K ¼
K1 K2

K3 K4

" #
; uo ¼

u1

u2

" #
, (48)

where K1 is a matrix of size nf� nf, K2 is a matrix of size nf� (ng�nf), K3 is a matrix of size(ng�nf)� nf, K4 is a
matrix of size (ng�nf)� (ng�nf), u1 is an array of size nf� 1, and u2 is an array of size (ng�nf)� 1. Substituting
Eqs. (47) and (48) into Eq. (40), we can obtain

K1u1þK2u2 ¼ B
qf
qn

� �o

, (49)

K3u1þK4u2 ¼ 0. (50)

Then u2 and (qf/qn)o can be expressed in terms of u1

u2 ¼ �K
�1
4 K3u1, (51)

qf
qn

� �o

¼ K5u1, (52)

where

K5¼ B�1ðK1 � K2K
�1
4 K3Þ. (53)

Take notice of the fact that if a constant is added to the solution of Eqs. (36), (37), and (38), the result is still
a solution. In order to eliminate this indeterminacy, the first element of u1 is appointed to be zero. Let K05 be a
matrix of size nf� (nf�1) that results from eliminating the first column of K5, and let u1

0 be an array of size
(nf�1)� 1 that results from eliminating the first element of u1; then

u01 ¼ K0
þ

5

qf
qn

� �o

, (54)
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where K0
þ

5 is the general inverse of K05:

K0
þ

5 ¼ ðK
0T
5K
0
5Þ
�1K0

T
5 . (55)

The proof of Eq. (54) is as follows. The matrixes K5 and u1 are divided as follows:

K5 ¼ K005 ;K
0
5

� �
; u1 ¼

f001
u01

" #
. (56)

Substituting Eq. (56) into Eq. (52), we can obtain

K05u
0
1 ¼

qf
qn

� �o

� K005f
00
1. (57)

Multiply the two sides of Eq. (57) by K0
T
5 :

K0
T
5K
0
5u
0
1 ¼ K0

T
5

qf
qn

� �o

� K0
T
5K
00
5f
00
1. (58)

Let f1
00 ¼ 0; then

K00
T
5K
00
5u
0
1 ¼ K0

T
5

qf
qn

� �o

. (59)

Multiplying the two sides of Eq. (59) by ðK0
T
5K
0
5Þ
�1, we can obtain Eq. (54). Let K6 be a matrix of size

(ng�nf)� (nf�1) that results from eliminating the first column of K4
�1K3; then

u2 ¼ �K6u
0
1 ¼ �K6K

0þ

5

qf
qn

� �o

. (60)

Eq. (60) establishes the relationship between f and qf/qn. Dispersing the viariational formulation (34) in
the same way and using Eq. (27), we can obtain

P1 ¼ uoTKuo �
a

o2

qf
qn

� �oT

B
qf
qn

� �o

�
T

o2r
qf
qn

� �oT

C
qf
qn

� �o

, (61)

where B and C are matrices of size nf� nf. In terms of Eq. (48), P1 can be written as

P1 ¼ uT
1K1u1 þ uT

1K2u2 þ uT
2K3u1 þ uT

2K4u2 �
1

o2

qf
qn

� �oT

aBþ
T

r
C

� �
qf
qn

� �o

. (62)

Let K1
0 be a matrix of size (nf�1)� (nf�1) that results from eliminating the first column and the first row of

K1. Let K2
0 be a matrix of size (nf�1)� (ng�nf)that results from eliminating the first row of K2, and let K3

0 be a
matrix of size (ng�nf)� (nf�1) that results from eliminating the first column of K3. In terms of Eqs. (54) and
(60) we can obtain

P1 ¼
qf
qn

� �oT

A
qf
qn

� �o

�
1

o2

qf
qn

� �oT

aBþ
T

r
C

� �
qf
qn

� �o

, (63)

where

A ¼ ðK0
þ

5 Þ
TK01K

þ
5 � ðK

0þ

5 Þ
TK02K6K

0þ

5 � ðK6K
0þ

5 Þ
TK03K

0þ

5 þ ðK6K
0þ

5 Þ
TK4ðK6K

0þ

5 Þ. (64)

Substituting Eq. (63) into Eq. (33), we can obtain the general eigenvalue problem:

A�
1

o2
aBþ

T

r
C

� �� �
qf
qn

� �o

¼ 0. (65)

If Eq. (29) is used to apply the pin-end boundary condition, must need eliminate the rows and columns in A,
B and C that correspond to the nodes at the contact line and obtain the reduced matrices A0, B0 and C0.
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Then Eq. (65) is rewritten as

A0 �
1

o2
aB0 þ

T

r
C0

� �� �
qf
qn

� �o

¼ 0. (66)

If Eq. (35) is used to apply the pin-end boundary condition, a term that denotes the penalty function should
be added to the eigenvalue problem (65):

A�
1

o2
aBþ

T

r
Cþ aG

� �� �
qf
qn

� �o

¼ 0. (67)

G is a matrix of size nf� nf that results from the dispersion of penalty function. Solving the eigenvalue
problem (66) or (67), we can obtain the eigenfrequencies and modes, and the damping rates can be calculated
by the formulas in Section 2.2.
3.1.2. Example

Henderson and Miles [5,10] and Carlos Martel et al. [11] studied the surface wave in a brimful circular
cylinder with a fixed contact line experimentally and theoretically. The example in their papers will be used to
check the computing method above. In this example, as shown in Fig. 3, a circular cylinder container is used,
with a radius is 2.766 cm. The liquid is water, and the liquid depth is 3.80 cm. The kinematics viscosity is
0.000001m2 s�1, the surface tension is 0.0724Nm�1, and the static contact angle is 901, so the free surface is
flat. The computations here and later were carried out on a computer with a 2.4GHz Intel Pentium4 processor
and 1Gb of memory.

The experimental, analytical, and numerical values of the frequencies are compared in Table 1, where s is
the number of nodal diameters and r the number of nodal circles. A 10-node tetrahedral element is adopted in
the computation and the number of elements is 5318. As shown in Table 1, the numerical values are close to
Fig. 3. Sketch map of numerical example with pin-end boundary condition.

Table 1

Experimental, analytical, and numerical values of frequencies of the (s,r) mode with pin-end boundary condition

(s,r) Frequencies (Hz)

(1,0) (2,0) (0,1) (3,0) (4,0)

Numerical value 4.68 6.35 6.80 7.84 9.29

Analytical value 4.65 6.32 6.84 7.80 9.26

Experimental value 4.69 6.36 6.65 7.94 9.52
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Table 2

Frequencies convergence test by number of elements

Number of elements Frequencies (Hz)

(1,0) (2,0) (0,1)

48 5.25 7.8 10.5

108 4.89 6.98 7.70

249 4.72 6.57 7.01

450 4.75 6.53 6.88

1375 4.69 6.36 6.74

3167 4.68 6.36 6.77

4086 4.68 6.36 6.79

5318 4.68 6.35 6.80

Analytical value 4.65 6.32 6.84
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the analytical and experimental values. As a convergence test for meshing, frequencies corresponding to the
first three modes are given in Table 2. As the mesh density increases, the calculated results become closer to the
analytical value. Fig. 4 shows the mode shape, which clearly indicates that the contact line is pinned and the
contact angle is not always 901 in the case of the pin-end boundary condition. The experimental, analytical
and numerical value of damping rates are compared in Table 3. The calculated results and the analytical
values are close. Damping ratios corresponding to the first three modes are given in Table 4 as a convergence
test for meshing. As shown in Table 4, as the mesh density increases, the calculated results become close to the
analytical value in general. But the accuracy does not increase monotonously with mesh density; sometimes
the calculated results with a smaller mesh density are better. One possible reason is that the shape of the mesh
as well as the density can strongly influence the calculated results of the damping rates.

3.2. Free-end boundary condition

In the case of an irrotational flow and free-end boundary condition there is no dissipation during the
sloshing, so F and z in free oscillation can be expressed by Eqs. (21a, b), too. The equation and boundary
conditions that only contain the space variables are Eqs. (25), (26), (27), and (28), and

qh

qn
¼ 0 on L. (68)

It has to be pointed out that the n above is the interior normal at the wall, not at the free surface.

3.2.1. FEM dispersion

The Galerkin statement of the equivalent weak formulation of Eq. (25) and boundary conditions (26), (28),
and (68) isZ

O
r2fdfdO�

Z
Sw

qf
qn

df dS �

Z
Sf

a

cos y
�

T

r
r2

� �
h� of

� �
dh dS �

T

r

Z
L

qh

qn
dhdL ¼ 0. (69)

Substituting Eq. (31) and (32) into Eq. (69) and using Eq. (27), we can obtain the variational formulation

dP3 ¼ 0, (70)

where

P3 ¼

Z
O
rfrfdO�

Z
Sf

a

cos y
h2 dS �

Z
Sf

T

r
rhrhdS. (71)

The expressions of P1 and P3 are the same. The free-end boundary condition (68) is a natural boundary
condition and has been contained in Eq. (69), so unlike the pin-end boundary condition, it does not need to be
introduced into the variational formulation. After the same course of dispersion in Section 3.1 we can obtain
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Fig. 4. Sloshing mode shapes in a cylindrical container with pin-end boundary condition: (a) (1,0); (b) (2,0); (c) (0,1); (d) (3,0); and (e)

(4,0).
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Table 3

Experimental, analytical, and numerical values of damping ratios of the (s,r) mode with pin-end boundary condition

(s,r) Damping ratios (Hz)

(1,0) (2,0) (0,1) (3,0) (4,0)

Numerical value 3.11� 10�3 3.40� 10�3 1.83� 10�3 3.62� 10�3 3.87� 10�3

Analytical value 3.17� 10�3 3.45� 10�3 1.80� 10�3 3.72� 10�3 4.01� 10�3

Experimental value 3.3� 10�3 3.6� 10�3 2.4� 10�3 4.0� 10�3 4.0� 10�3

Table 4

Damping ratios convergence test by number of elements

Number of elements Damping ratios (Hz)

(1,0) (2,0) (0,1)

48 4.77� 10�3 4.74� 10�3 3.42� 10�3

108 3.28� 10�3 3.54� 10�3 2.28� 10�3

249 3.04� 10�3 3.34� 10�3 1.95� 10�3

450 3.24� 10�3 3.54� 10�3 2.10� 10�3

1375 3.07� 10�3 3.32� 10�3 1.93� 10�3

3167 3.08� 10�3 3.35� 10�3 1.87� 10�3

4086 3.10� 10�3 3.37� 10�3 1.83� 10�3

5318 3.11� 10�3 3.40� 10�3 1.83� 10�3

Analytical value 3.17� 10�3 3.45� 10�3 1.80� 10�3

Fig. 5. Sketch map of numerical example with free-end and wetting boundary condition.
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the general eigenvalue problem (65). Solving it, we can get the eigenfrequencies and modes, and the damping
rates can be calculated by the formulas in Section 2.2.

3.2.2. Example

An example will be given. When the contact angle is 901 and the free surface is flat, the analytical solution
for eigenfrequencies and modes of liquid small amplitude sloshing in a cylindrical container with free-end
boundary condition is given in Ref. [12]. But in practice the 901 contact angle and the free-end condition
cannot be obtained exactly, so there is no experimental value of this case, and the calculated result will be
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Table 5

Numerical and analytical values of frequencies of the (s,r) mode with free-end boundary condition

(s,r) Frequencies (Hz)

(1,0) (2,0) (0,1) (3,0) (4,0)

Numerical value 4.11 5.47 6.26 6.65 7.80

Analytical solution 4.11 5.47 6.25 6.65 7.82

Table 6

Frequencies convergence test by number of elements

Number of elements Frequencies (Hz)

(1,0) (2,0) (0,1)

48 4.15 5.68 7.31

108 4.13 5.63 6.75

249 4.08 5.50 6.39

450 4.10 5.50 6.39

1375 4.10 5.45 6.28

3167 4.10 5.46 6.27

4086 4.10 5.46 6.27

5318 4.11 5.47 6.26

Analytical solution 4.11 5.47 6.25
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compared only with the analytical solution. As shown in Fig. 5, the radius of the container is 0.02766m, water
is used as the liquid, the liquid depth is 0.038m, the kinematic viscosity is 0.000001m2 s�1, the surface tension
is 0.0724Nm�1, and the static contact angle is 901. A 10-node tetrahedral element is adopted in the
computation, and the number of elements is 5318. The numerical and analytical values of frequencies are
compared in Table 5. The numerical values are close to the analytical values. Frequencies corresponding to the
first three modes are given in Table 6 as a convergence test for meshing. As the mesh density increases, the
calculated results become close to the analytical values. Fig. 6 shows the mode shape. It shows that the contact
line is removable and the contact angle is always 901 in the case of free-end boundary condition. The analytical
and numerical values of damping rates are compared in Table 7. The calculated results and the analytical
values are close. As a convergence test for meshing, damping ratios corresponding to the first three modes are
given in Table 8. As the mesh density increases, the calculated results become close to the analytical value in
general. However, as was the case for the pin-end boundary condition, the accuracy does not increase
monotonously with mesh density; sometimes the calculated results with smaller mesh density are better. One
possible reason is that the shape of the mesh as well as the density can strongly influence the calculated result
of damping rates.

3.3. Wetting boundary condition

In the case of an irrotational flow and wetting boundary condition, if l 6¼0 and l 6¼N, there is dissipation at
the contact line during sloshing, so F and z in free oscillation can be expressed as

F ¼ f eo1t (72a)

z ¼ h eo1tþc1 , (72b)

where o1 is a complex number whose imaginary part denotes frequency and real part denotes damping, and c1

is a purely imaginary number that denotes the phase difference between F and z. Substituting Eq. (72) into
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Fig. 6. Sloshing mode shapes in a cylindrical container with free-end boundary condition: (a) (1,0); (b) (2,0); (c) (0,1); (d) (3,0); and (e)

(4,0).

W. Wei et al. / Journal of Sound and Vibration 317 (2008) 739–759754
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Table 7

Numerical and analytical values of damping ratios of the (s,m) mode with free-end boundary condition

(s,m) Damping ratios (Hz)

(1,0) (2,0) (0,1) (3,0) (4,0)

Numerical value 4.90� 10�3 6.11� 10�3 3.01� 10�3 7.15� 10�3 7.69� 10�3

Analytical solution 4.90� 10�3 6.10� 10�3 2.95� 10�3 7.08� 10�3 7.85� 10�3

Table 8

Damping ratios convergence test by number of elements

Number of elements Damping ratios (Hz)

(1,0) (2,0) (0,1)

48 7.82� 10�3 1.08� 10�2 7.62� 10�3

108 5.09� 10�3 6.18� 10�3 3.47� 10�3

249 4.95� 10�3 6.31� 10�3 3.32� 10�3

450 5.20� 10�3 6.17� 10�3 3.07� 10�3

1375 4.91� 10�3 6.16� 10�3 3.03� 10�3

3167 4.90� 10�3 6.12� 10�3 3.02� 10�3

4086 4.90� 10�3 6.14� 10�3 3.04� 10�3

5318 4.90� 10�3 6.11� 10�3 3.01� 10�3

Analytical solution 4.90� 10�3 6.10� 10�3 2.95� 10�3
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Eq. (5), we can obtain

qf
qn
¼ o1 e

c1h. (73)

In order to make the equation above valid, c1 must have the form of
c1 ¼ iðkp� j0Þ, (74)

where

c0 ¼ arccos
Reðo1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Reðo1Þ
2
þ Imðo1Þ

2
q

0
B@

1
CA. (75)

Let c1 ¼ i(p/2�c0). Substituting Eq. (72) into Eqs. (2), (3), (4), (5), and (8), we can obtain the equation and
boundary conditions that only contain the space variable:

r2f ¼ 0 in O, (76)

qf
qn
¼ 0 on Sw, (77)

qf
qn
¼ o1h ec1 on Sf , (78)

o1f� ec1
a

cos y
�

T

r
r2

� �
h ¼ 0 on Sf , (79)

o1h ¼ l
qh

qn
on L. (80)
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3.3.1. FEM dispersion

The Galerkin statement of the equivalent weak formulation of Eq. (76) and boundary conditions (77), (79),
and (80) isZ
O
r2fdfdO�

Z
Sw

qf
qn

df dS � ec1

Z
Sf

ec1
a

cos y
�

T

r
r2

� �
h� o1f

� �
dhdS þ

e2c1T

rl

Z
L

o1h� l
qh

qn

� �
dhdL ¼ 0.

(81)

Substituting Eqs. (31) and (32) into Eq. (81) and using Eq. (78), we can obtain the variational formulation

dP4 ¼ 0, (82)

where

P4 ¼

Z
O
rfrfdO� e2c1

Z
Sf

a

cos y
h2 dS � e2c1

Z
Sf

T

r
rh � rhdS þ e2c1

I
L

T

rl
o1h2 dL. (83)

Eq. (83) is not convenient to be used in the FEM, because c1 is a function of o1. In the case of weakly
damped sloshing, |Re(o1)/Im(o1)|51, so c051 and j1Ep/2. Let j1 ¼ p/2; then Eq. (83) can be rewritten as

P4 ¼

Z
O
rfrfdOþ

Z
Sf

a

cos y
h2 dS þ

Z
Sf

T

r
rhrhdS �

I
L

T

rl
o1h2 dL. (84)

Eq. (84) will be used as the variational formulation of the FEM modal analysis later. The dispersion of the
first three items in Eq. (84) is the same as that in Section 3.1, and the dispersion of the last item is as follows.
Let every line element have p nodes. In element i, h is expressed as

hi ¼
Xp

j¼1

hijPj , (85)

where hij is the value at node j in line element i, and Pj is basis function of node j. Substituting Eq. (85) into the
last item of Eq. (84) we can obtainI

L

T

rl
o1h

2 dL �
T

rl
o1

X
i

Xp

j¼1

Xp

k¼1

hij

Z
Li

PjPk dLi

� �
hik, (86)

where Li is the region of line element i. Eq. (86) can be further expressed asI
L

T

rl
o1h2 dL �

T

rl
o1

X
i

hiTDihi, (87)
Table 9

Numerical and analytical approximate values of the fundamental complex frequencies with wetting boundary of different l

1/l Fundamental complex frequencies (Hz)

Approximate solution Numerical value

105 4.64i 4.69i

103 �0.00722+4.64i �0.00687+4.69i

102 �0.0710+4.63i �0.0630+4.68i

10 �0.257+4.30i �0.268+4.46i

1 �0.0399+4.11i �0.0688+4.11i

0.1 �0.00401+4.11i �0.00695+4.11i

0.01 �0.000401+4.11i �0.000695+4.11i

0 4.11i 4.11i
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Fig. 7. Sloshing mode shapes in a cylindrical container with wetting boundary condition: (a) (1,0); (b) (2,0); (c) (0,1); (d) (3,0); and (e)

(4,0).

W. Wei et al. / Journal of Sound and Vibration 317 (2008) 739–759 757



ARTICLE IN PRESS
W. Wei et al. / Journal of Sound and Vibration 317 (2008) 739–759758
where

Di ¼ fDi
jkg; Di

jk ¼

Z
Li

rPjrPk dLi; j; k ¼ 1; 2; . . . ; p.

Arrange values of h at all nodes at the free surface as a column matrix h
o; thenI

L

T

rl
o1h2 dL �

T

rl
o1h

oTDho, (88)

where D is a matrix of size nf� nf assembled from Di. In terms of Eq. (78) the dispersion form of P4 is

P4 ¼
qf
qn

� �oT

A
qf
qn

� �o

þ
1

o2
1

qf
qn

� �oT

aBþ
T

r
C

� �
qf
qn

� �o

�
T

o1rl
qf
qn

� �oT

D
qf
qn

� �o

. (89)

Substituting Eq. (89) into Eq. (82), we can obtain the quadratic eigenvalue problem:

A�
T

o1rl
Dþ

1

o2
1

aBþ
T

r
C

� �� �
qf
qn

� �o

¼ 0. (90)

By solving it, we can obtain the complex frequencies o1 and modes. The real part of o1 denotes the damping
caused by dissipation at the contact line. The damping caused by dissipation in the Stokes boundary layer and
inner flow can be calculated by the formulas in Section 2.2.
3.3.2. Example

Finally, an example is given. The boundary layer approximate solution for complex frequencies of liquid
small amplitude sloshing in a cylindrical container with wetting boundary condition is presented in Ref. [9].
The calculated results of the proposed FEM scheme and the approximate solution of a cylindrical container
given in Ref. [9] are compared. As shown in Fig. 5, the radius of the container is 0.02766m, the liquid is water,
the liquid depth is 0.038m, the kinematic viscosity is 0.000001m2 s�1, the surface tension is 0.0724Nm�1, and
the static contact angle is 901. A 10-node tetrahedral element is adopted in the computation and the number of
elements is 5318. The numerical and analytical approximate values of fundamental complex frequencies
corresponding to different l are compared in Table 9. When 1/l ¼ 0, it is a free-end boundary condition case,
and there is no dissipation at the contact line, so the complex frequency is a purely imaginary number. When
1/l ¼ 105, it is approximate to the case of a pin-end boundary condition; the dissipation at the contact line is
very weak, so the real part of the complex frequency is very small and is omitted here. When 1/l is equal to
other values, the computing result and approximate solution are somewhat different, especially the real part,
which denotes damping at the contact line. There are three possible reasons for this. First, the boundary layer
approximate solution is not exact itself. Second, in FEM modal analysis the assumption |Re(o1)/Im(o1)|51 is
adopted and it cannot be met exactly. Third, error is also caused by FEM dispersion. The mode shapes are
given in Fig. 7, which shows that the contact line is removable and the contact angle is not always 901 in the
case of a wetting boundary condition. Comparing Figs. 4, 6, and 7, it can be found that Fig. 7 is the
betweenness of Figs. 4 and 6. There is no analytical formula for the damping of the other parts in a cylindrical
container with wetting boundary condition, so the numerical value of damping in the other parts is not shown
here.
4. Conclusion

FEMs were established for modal analysis of the liquid small amplitude sloshing with three kinds of contact
line boundary conditions. The calculated results are close to the analytical value. When the wetting boundary
condition is adopted, the FEM computation makes the assumption that |Re(o1)/Im(o1)|51. Sometimes this
assumption may not be valid, so how to compute without it is still a problem. In principle, the method in the
present paper can be applied to containers of arbitrary shape, but for containers with complex shapes, such as
containers with baffles, the effectiveness needs to be studied further.
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